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In this, the second of two papers on the subject, we present applications of the moving finite 
element method to a number of test problems. Key features are linear elements, a direct 
approach to parallelism and node overtaking (avoiding penalty functions), rapid inversion of 
the mass matrix by preconditioned conjugate gradients, and explicit Euler time stepping. The 
resulting codes are fast and efficient and are able to follow fronts and similar features with 
great accuracy. The paper includes a substantial section on changes of dependent variable and 
front tracking techniques for non-linear diffusion problems. Test problems include non-linear 
hyperbolic conservation laws and non-linear parabolic equations in one and two dimensions. 
0 1988 Academic Press, Inc. 

1. INTRODUCTION 

In Baines and Wathen [ 11, hereafter called Part I, it was shown that in one 
dimension the moving finite element (MFE) method, invented by Miller [2], is 
(without penalty functions) a purely local method, being also a special case of a 
class of fixed and moving finite element methods for evolutionary problems based 
on local elementwise projections. It was also shown in Part I that the 
corresponding method in higher dimensions is a particular (global) projection of 
the local method, as is the fixed finite element (FFE) Galerkin method in any 
number of dimensions. The current paper gives examples of practical calculations 
using the method of Part I in one and two dimensions. Both hyperbolic and 
parabolic problems are included, while for parabolic problems a discussion of some 
technical aspects of the approximation and of the choice of dependent variable is 
also given. Some examples on systems of equations are also presented. 

Applications of the MFE method have appeared in several recent papers 
(Gelinas, Doss and Miller [3], Dukowicz [4], Mosher [IS], Hrymak et al. [6]). 
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These employ a direct global application of the technique and also incorporate 
penalty functions to overcome parallelism (q.v.) and node overtaking. Implicit 
methods and a stiff solver are used to time step the semi-discrete MFE equations. 

The approach adopted here differs from these in that penalty functions are 
avoided, simple projections are used and the time stepping is explicit Euler. The 
consistent mass matrix is shown to be well conditioned when diagonally pre- 
conditioned and, as a result, is inverted rapidly using preconditioned conjugate 
gradients [7]. As a result, the method is much faster and, although special tee 
ques are still required to avoid singularities, these are direct (see below). In the 
present paper we present a number of examples using this approach. 

Scalar hyperbolic problems are discussed in Section 2 together with shock 
modelling techniques: most of the theory has already appeared in Part I, Section 
however. Section 3 is a substantial section in which problems involving parabolic 
terms (linear and non-linear) are discussed from the present point of view. As in the 
papers cited above, special treatment of second derivative terms is necessary, an 
this is discussed in Section 3 together with some useful ideas on transformation of 
the dependent variable. Examples are given in both one and two dimensions. 

In Section 4 the approach is applied to hyperbolic systems of equations and a 
discussion given of the advantages and of the difficulties involved. Finally in 
Section 5 we consider some open questions concerning MFE type methods 

First, however, we discuss two issues common to all these MFE applications, 
namely parallelism (or collinear/coplanar nodes), the presence of which causes 
singularity of the mass matrix, and node overtaking A full discussion is given in 
Wathen and Baines [S] but we summarise the problems and their direct cures 

Parallelism arises from the loss of rank of the matrix A of Part I, Section 2. This 
is due to the fact that two or more test functions become coincident when the slopes 
of the solution in adjacent elements become equal. A simple remedy is to omit the 
particular MFE equation corresponding to the superfluous test functions, leaving 
an underdetermined system. A particular solution of this system is easily obtained 
(by, for example, setting the speeds of the parallel nodes equal to zero) (see Watben 
and Baines KS]). Then, by adding a suitable multiple of the appropriate (very 
simple) null space, these zero nodal speeds may be adjusted to any desired (e.g., 
averaged) value. This is the procedure used in the calculations done here. 

The second issue concerns the time-stepping method used to fully discreti 
problem. The MFE method itself is non-linear (see Part I) (even for 
problems) and thus any implicit method will require the solution of systems 
linear equations. Celinas, Doss, and Miller [3] have computed solutions to a large 
number of problems using implicit methods. Our approach is, on the contrary, to 
use the simplest possible explicit method, namely the forward Euler method, in all 
our computations. This has allowed considerable flexibility in dealing wit the 
different classes of problems we have considered. 

In particular, we can determine in advance the time steps which give rise to node 
overtaking. This allows us to choose sufficiently small time steps to avoi 
difficulty, In this sense the time step restriction is a kind of stability co~d~tio~~ 
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However, in hyperbolic problems such as those discussed in Sections 2 and 4 below, 
we deliberately allow node overtaking in order to imitate shock formation. 

Various strategies for time stepping in all problems have been devised to 
encourage smooth nodal movement. Such restrictions are associated with accuracy 
considerations which, apart from simple truncation error analysis, still suffer from 
the lack of a formal analysis (but see DuPont [9]). 

One such time stepping strategy, due to Please [lo], is,to restrict the slope of the 
solution to change only by a small proportion. The other, due to Sweby [ 111, is to 
restrict the relative motion of nodes to be monotonic (i.e. that the distance between 
them does not pass through a turning point). These are designed for use in non- 
shock problems. 

We move now to the first set of examples, those for scalar hyperbolic problems. 

2. SCALAR HYPERBOLIC PROBLEMS 

In this section we give illustrations of the use of the MFE method in solving 
scalar hyperbolic equations of the form 

u,+V*f=O, (2.1) 

in both one and two dimensions. 

2.1. One-dimensional Problems 

The first example is the equation 
u,+uu,=o (2.2) 

with piecewise linear initial data, as in Fig. 2.1. In this, the simplest non-linear 
scalar equation, a number of special situations in MFE occur. With a continuous 
piecewise linear approximation U to u, the operator L(U) = -VU, is piecewise 
linear in each element although discontinuous between elements in general. It 
therefore lies in S, without further projection (see Part I, Section 2) but, moreover, 
it also happens to lie in SaB. Thus the ti, of Part I, Eq. (2.7), is immediate and so is 
the jr of Part I, Eq. (3. 4): As a result, for the element k, 

(cf. Section 4 of Part I and, for the node j, 

cij = 0 

ij = aj. 

(2.3) 

(2.4) 

In this case the MFE equations are identical with the equations for the solution of 
(2.2) by characteristics. 
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FIG. 2.1. Initial data for the MFE solution of Bergers’ equation in one dimension. 

Furthermore, the integration of (2.4) is trivial and there is -no error in forward 
Euler time stepping. For Eq. (2.2) therefore the MFE method described in Part I, 
Section 4 is exact, at least until shocks occur. Shock formation may be associated 
wiih node overtaking in the sense that, as a segment of the solution overturns, a 
shock is detected (see Section 4.6 of Part I). When this occurs the vertical segment 
may be constrained to remain vertical while the horizontal speed of its midpoint is 
maintained. The result is a two-point representation of a shock with the correct 
shock speed as calculated from the jump condition. The identification of the MFE 
method with the solution by characteristics and the consistency of the element 
motions with the local wave speeds ensures entropy satisfaction. This is also true 
for scalar expansion waves: for example, a vertical segment will expand with t 
correct spread, corresponding to the similarity solution. Shock merging may be 
treated in a similar way to shocks. 

We illustrate these features by taking the initial data in Fig. 2.1 and running it 
through shock formation to a time when the character of the final solution is 
evident (Fig. 2.2). 

L i 

FIG. 2.2. MFE solution of Burgers’ equation at time (a) t =0.5; (b) t= 1.0; (c) t= 1.5. 
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The second example chosen is the Buckley-Leverett equation 

with the non-convex flux function 

f(u)= u2 
u* + (l/2)( 1 - u)* (2.6) 

as in, e.g., Concus and Proskurowski [12]. In this case, -f(U), must be projected 
into S,, and there will be a projection error not present in the previous example. 
Taking a piecewise linear approximation U as before, we project L(U) into the local 
element space S, as in Part I, Section 4.1. This gives wivk and the local segment 
motions of Part I, Section 4.2. Transfer of this information on to the node j leads to 
ordinary differential equations (ODES) of the form of Part I, Eq.’ (4.13) for the dj 
and Sj. We use Euler forward differences to step these ODES forward in time, giving 
rise to an evolution error. Unlike the previous example, the time step must be 
chosen small enough to give a required accuracy. The “shock” or discontinuity 
when it appears is modelled as before, by freezing the angular speed of the overtur- 
ning segment and continuing the midpoint speed smoothly. 

The initial data 

u~z4=0.1/(0.1 +x) (2.7) 

and the MFE solution at subsequent (even) time steps are shown in Fig. 2.3. Time 
steps were taken to be 0.1 here. 

FIG. 2.3. Initial data and MFE solution of one-dimensional Buckley-Leverett equation. 
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2.2. Scalar Hyperbolic Problems in 2-dimensions 

In Part I it was shown that the MFE method in two and higher space dimensions 
is non-local, but that a closely related local method exists (Section 5.3 of Part I). 
We give here the results of two computations on the same problem, one with the 
local and one with the non-local method. 

The problem is a simplification of the porous media flow of incompressible 
immiscible fluids when the total flow is specified. (The details of the derivation of 
the model are given in [ 131). 

The appropriate differential equation is 

;+v. zl* 
u2 + (3/4)( 1 - u)* = O 

on a square region (x, y) E [0, 412 with ~(0, 0, t) = 1 and au/aq = 0 on the boun- 
dary. The initial condition is 

4x, y, 0) = 
0.1 

O.l+ (l/4) pq7 

and is represented by simple nodal interpolation on an unsophisticated regular 
mesh (Fig. 2.4). An isometric plot of the discrete initial data is also shown in Fig. 
2.4. The approximate solution after 24 explicit Euler time steps of length .4t = 0.025 
is given in Fig. 2.5a for the non-local MFE method and in Fig. 2.5b for the related 
local method. In each case nodes at the corners of the region are held fixed, while 
other nodes on the boundaries are free to move only along the boundary. The 
solution discontinuity shown in the figures forms between time steps 17-18 in eat 
computation. Subsequently the node points of a folded triangular element are 
constrained to move normal to the line of the folded element at the Hugoniot shock 
speed. The details are given in [8, 131. 

Fig. 2.4. Initial mesh and data for MFE solution of the two-dimensional generalisation of the 
Buckley-Leverett equation. 

581/7912-3 
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a 

b 

FIG. 2.5. (a) Global MFE solution of two-dimensional Buckley-Leverett equation after 24 explicit 
steps of length 0.025. (b) Local MFE solution of two-dimensional Buckley-Leverett equation after 24 
explicit steps of length 0.025. 

This approach ignores any sideways movement of the shock. However, con- 
sideration of segment motions of triangular elements in 2-dimensions is expected to 
afford a more precise description of the problem of a curved moving shock. This is 
the subject of present research, although the essential ideas appear in [14]. 

3. PARABOLIC PROBLEMS 

In this section we describe the application of MFE to a number of parabolic 
problems whose solutions exhibit steep moving fronts. Before doing so we discuss in 
detail some smoothing procedures which are necessary to interpret inner products 
involving second-order operators which appear in the MFE formulation (cf. Part I, 
Section 5.1). 
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3.1. Second-Order Operators 

As in Part I we consider evolution equations of the form 

u, = Uu), (3.1) 

where L is a second-order spatial differential operator, and seek an approximate 
finite element solution in the form 

with piecewise linear basis functions aj as in Part I, Section 1. 
In the analysis of Part I it was generally assumed that U lies in the domain space 

of the spatial operator L, but for parabolic problems E will contain second order 
terms (e.g., L(u) = u,,) and in this case L(U) exists only in the sense of distributions 
and has infinite L, norm. As in Part I, we define a suitable smoothing operator S 
which is such that S(U) has sufficient continuity to lie in the domain space of L, 
and the projection of L(U) into the space S,, is interpreted as 

lim PL( S( U)), (3.3) 
S-I 

where I is the identity operator (cf. Part I, Eq. (5.1)). 
In the finite element approach the Galerkin equations are derived by focally 

minimising 

(cf. Part I, Eq. (3.7)). 

II u, - -w)/12,2 (3.4) 

In the fixed finite element (FFE) method, the resulting Galerkin equations 
involve evaluation of the inner products 

(L(U)> %>5 (3.5) 

where ( ., . ) denotes the standard L, inner product. If L contains second or higher 
order derivatives, (3.4) should formally be replaced by 

ll~,-w(UMt,~ (3.6) 

so that L(S( U)) has finite L, norm, and (3.5) correspondingly replaced by 

(L(S(U)), 4). (3-V 

Little attention is paid to the smoothing operator S in the FE case, since (3.5) exists 
and is readily evaluated using integration by parts. 

For an MFE solution of (3.1) with both the coefficients a, and basis functions clj 



278 JOHNSON, WATHEN, AND BAINES 

dependent on time (cf. Miller [Z]) the MFE equations are derived by minimising 
(3.4) with respect to the parameters hj and the nodal velocities Sj, leading to 
Galerkin equations which require evaluation of the inner products 

(L(U), aj> (3.8) 

and 

<L(U), Pii)? j= 1, . ..) d, (3.9) 

where d is the number of space dimensions. The additional basis functions flji may 
be written as a vector pi defined by 

fli = -(VU) ai (3.10) 

(cf. Part I, Eqs. (1.13) and (1.14)). 
The inner products (3.8) may be evaluated using integration by parts as in the 

fixed finite element method, but since the components of the fli are discontinuous at 
the nodes and across element boundaries (see Part I, Fig. l.l), (3.9) does not exist. 
We must replace (3.9) by 

<L(S(U)), l-4) (3.11) 

and address the problem of defining the smoothing operator S in order to evaluate 
(3.11). In the discussion of smoothing procedures which follows attention shall be 
focused on the simplest one-dimensional case 

L(U) = uxx (3.12) 

but extensions to more general operators and higher dimensions will be indicated as 
appropriate. With L defined by (3.12) we require to define a smoothing operator S 
such that the inner product 

( 
$ tsCu))9 Pi) (3.13) 

exists. 
In his original formulation of the MFE method Miller [ 1 ] defines S(U) as 

(3.14) 

where p’ is a Cr function of unit total integral which has support within an interval 
of radius 6 about the origin. This process is known as “b-mollification” and may be 
interpreted as replacing the original basis functions ai in (3.2) by “mollified” basis 
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functions olj” which have sufficient continuity to ensure that (3.13 ) exists in the limit 
as 6 + 0. Evaluating (3.13) with S(U) defined by (3.14) yields 

(U,,, Pi> -+ -  tW+ I -m?), (3.15) 

where 

independent of the smoothing 6 as 6 -+ 0. Extension of this technique to more 
general operators and to higher dimensions may be achieved [30]. 

In their variational formulation of MFE, Mueller and Carey [ 151 interpret inner 
products involving second order operators by assuming an arbitrary smoothing, 
such that V(S( U)) is continuous across element boundaries so that Green’s theorem 
may be applied. This procedure yields the same result (3.15) as &mollification for 
the inner products (3.13) but since the approach generalises to non-linear operators 
we shall describe the interpretation of 

for a general function D(U). 
Recalling the definition (3.10) of /Ii, (3.16) may be expressed as 

( ; (D(U) U,), - uxu.) = - j;y -& (D(U) U,) u,aj dx. (3.17) 

The integral (3.17) may be rewritten using Green’s theorem, as 

Assuming an arbitrary smoothing such that U, is continuous at node si, the first 
term in (3.18) vanishes and the second term may be expanded to give 

j’“’ D(U) U, U,(cl,), dx + isi+’ D(U) ai & (f U:) dx. 
s,- I s,--l 

Using Green’s theorem again, the second term in (3.19) may be written 

s 
si+, a 
sip, ~(D(U)a,+Uz,)dx-j-srrl(D(U)ai)x~~dx 

si-, 

(3.19) 

(3.20) 
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and, assuming continuity of U, at si once more, the first term in (3.20) vanishes 
yielding the resulting expression for (3.16) as 

which is equivalent to (3.15) in the case D(U) = 1. 
A similar analysis may be used in two space dimensions [24], assuming an 

arbitrary smoothing of the gradients U,, U, across element edges to give the 
corresponding result 

(V’(n(U)VU),Bi)=j (D(U)VU(VU.Vai)-fV(D(U)a,)VU.VU)dS2i 
Q, 

+ boundary terms if node i is on the boundary, (3.22) 

where fii is the patch of elements around node i over which ai has support and pi is 
as in Part I, Eq. (1.8). 

For one-dimensional problems we have used an approach suggested by Morton 
[ 161 (see [ 171 for details) in which the smoothing operator S is defined explicitly 
as 

SC U)(x) = w(x) (3.23) 

by constructing a “recovered” function w(x) from the piecewise linear 
approximation U(x) (or its gradient U,(x)) which has sufficient continuity to allow 
evaluation of the inner products (3.11). Suitable functions w(x) may be constructed 
by fitting local polynomials of sufficiently high order to U(x) or U,(x). 

If the recovered function w(x) is defined on the element connecting nodes i an 
i - 1 by the Hermite cubic function satisfying 

then 

w(si-~)=Ui-~, w(si- 1) = $(mi + mi- 1) 

W(Si) = ui, w(si)=~(mi+mi+l)~ 

(3.23) 

(W,,Bi)= -f(mf+,-mm?), 

which is entirely equivalent to using &mollification or to assuming an arbitrary 
smoothing of U,. Also 

(WXX? ai) = m,, 1 - mi, 

consistent with standard integration by parts. Hence we have shown that the 
recovery procedure encompasses the smoothing procedures described above. Since 
we may define w(x) in a variety of different ways the recovery procedure offers 
greater flexibility than the other methods described with no loss of computational 
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efficiency in one dimension. Numerical experiments suggest that improved accuracy 
and less restrictive time steps are afforded by exploiting superconvergence ideas 
fitting a quadratic function w,(x) to the MFE gradient U,, defined on the element 
between nodes i and i - 1 by 

w,(~j- ,) = (1 -e) mip 1 + emi 
w,(gsi+Si-l))=m, 

W.JSi)= cpmi+ Cl- VImi+ 

(3.24) 

where 

e= AS, ASi 

Asj + A.sp 1 
and 

‘=Asi+A,+, 

(see Johnson [ 171). This form of recovery is used in the one-dimensional numerical 
results given later in this section, 

The recovery technique may be used for more general operators and has been 
implemented successfully on a linear problem in two dimensions. In two dimensions 
the construction of a recovered function over an element requires information from 
the solution in the surrounding elements so that a strictly elementwise assembly of 
inner products is no longer possible and consequently efficiency is reduced. 
Although we have found from our experience using MFE in one dimension t 
recovery techniques can improve accuracy and allow larger time steps, the substan- 
tial increase in computational effort involved in using recovery in two dimensions 
has led us to choose the more compact form (3.22) to evaluate element inner 
products in this case. In particular, cases where high accuracy is given greater 
priority than computational efficiency it may be appropriate to use recovery. 

We shall now use the recovery procedure described above to give an analysis of 
nodal movement for the MFE solution of Burgers’ equation in, one dimension, 
together with numerical results for a particular test problem. 

3.2. MFE Solution of Burgers’ Equation 

In this section we consider solution of the viscous Burgers’ equation 

u, -I- uu, = FU,, (3.25) 

which develops steep moving fronts in the case E < 1. 

3.2.1. Analysis of Nodal Movement 

We seek a piecewise linear MFE solution U(x, t) in the form (3.2) of 

lJ,+ uu,=EU,,. (3.26) 
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Using the recovery technique described above, this is equivalent to solving 

u, + uu, = EW,, (3.27) 

for a suitably defined recovered function w(x) [17]. 
The time derivative in (3.26) is given by (cf. Part I, Eq. (1.9)) 

l-Jt=pjaj+,ijpj (3.28) 

and the convection term may be expressed as 

UU, = - C ajflj 

(cf. [ 131). 
If we define w(x) by fitting a cubic to U(x) (or a quadratic to U,(x)) within an 

element, then w,(x) is a piecewise linear discontinuous function and may thus be 
expressed as 

Wxx=C CjNj+ bjpj 

for suitable coeffiients cj, bj. Substituting (3.28), (3.29), (3.30) in (3.27) we have 

C (bjaj + sj/lj- ajpj) = E 1 (cjaj+ bjpj). 

Both sides of (3.31) lie in the space S,, spanned by the {cli, p,}, hence no projection 
is necessary, (cf. Part I, Section l), and using the discontinuity of the functions pi at 
the nodes we obtain the solution 

i j = ECj 

ij=aj+ebj. 
(3.32) 

It is now possible to see how the nodal velocities ij are affected ‘by the choice of 
coefficients bj which appear in (3.30), i.e., by the choice of smoothing for the 
second-order operator. From (3.30) we have 

b, = Cwxx)j+ - twxx)j- 
3 

mj+l -mj 

and it may be seen that it is the jump in w, that drives the motion of the nodes, 
and hence that different choices of w may provide substantially different nodal 
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movement. In particular we note that if w(x) is defined by fitting a cubic spline to 
U(x), so that w,,(x) is continuous at the nodes, we have 

bj = 0 for eachj 

and hence from (3.32) the nodes will then always move as in the limiting hyperbolic 
case E = 0. 

In the next section we give numerical results using MFE for a particular example 
of (3.25) with the recovered function chosen as the quadratic defined by (3.24). The 
semi-discrete solution (3.32) is advanced using explicit Euler time stepping with a 
fixed time step which is chosen to be small enough to ensure that nodes do not 
overtake. 

3.2.2. Numerical Results 
A particular solution of 

u, + uu, = EUxx, XE co, 11 

may be obtained using the Cole-Hopf transformation giving 

4% t) =f(O 

where 

and 

(3.33) 

where CI, p, and p are arbitrary constants. Initial and boundary conditions are 
obtained from (3.33) as 

4% 0) =.I-+ - B) 
40, t) =f( - pt - P) 

41, t) =f(l - Pt - B) 

and the values of the arbitrary constants were chosen as o( = 0.4, p = 0.125, p = 0.6, 
and E = 0.001. For small values of E the time-dependent boundary conditions may 
be approximated to high accuracy by Dirichlet conditions 

u(0, t)= 1 .o 

u(l, t)=0.2. 
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Numerical results using MFE, as described above, with 8 moving nodes and 
At = 1 x 10e3 are compared with the analytic solution (3.33) in Fig. 3.1. 

3.3. MFE For Non-linear Diffusion Problems 
In this section we consider MFE solutions of non-linear diffusion equations of 

the type 

u, = V . (D(u) Vu) 

for some general function D(u). One case of particular interest is 

(3.34) 

D(u) = un (n>O) (3.35) 

which describes many physical processes, e.g., seepage of a fluid in a porous 
medium, spreading of a thin viscous film under gravity and the propagation of 
radiation waves. Similarity solutions exist in this case and have been studied by 
Ames [lS], Tayler, Ockenden, and Lacey [19], and Zel’dovich and Kompaneets 
[20] among others. Numerical solutions in the presence of an additional source 
term have been studied by Tomoeda [21], and for general D(u) by Meek and Nor- 
bury [22]. Before we describe the MFE solution of (3.34) we shall introduce a 
change of dependent variable which has some very desirable features. 

3.3.1. Change of Dependent Variable 
The behaviour of solutions of (3.34) is of particular interest if there exist 

degenerate points at which D(u) = 0, in which case the coefficients on the RHS of 
(3.34) typically become unbounded. In the case (3.35) a degenerate point u=O 
represents a moving interface and from similarity solutions it may be seen that V2u 
is unbounded as u --+ 0. Such points of degeneracy require careful attention in any 

1.0 

a. 5 

0.5 1. 0 

FIG. 3.1. Initial data, MFE and analytic solutions of the viscous Burgers’ equation in one dimension, 
time t=O.O to t= 1.2. 
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numerical solution, but it may be possible to transform the problem in such a way 
that the coefficients in the transformed problem remain bounded at the points of 
degeneracy. 

For numerical solution of problems of type (3.34) with D(u) defined by (3.35), 
together with an additional source term, Tomoeda [21] suggests that this may be 
achieved by a change of dependent variable of the form 

v = u*. (3.30) 

Using this transformation in the equation 

u, = v . (ZPVU) (3.37) 

yields 

v,=vv2v+; (Vu)2 (3.38) 

and for similarity solutions of (3.37) it may be verified that in the transforme 
problem both Vv and V2v remain bounded as v --f 0. At the degenerate point v = 0, 
(3.38) reduces to the hyperbolic equation 

v, =; (Vv)Z. (3.39) 

Please and Sweby [23] have shown that the transformation (3.36) is a partic~ia~ 
example of a class of transformations appropriate for general problems of type 
(3.34). For the numerical solution of these problems they suggest a transformation 
to a new dependent variable 9 given by 

cp=-- s- u D(P) dp 
0 P 

(3.40) 

which transforms (3.34) to 

tp, = D(u) V2q - (V~I)~. (3.41) 

They also point out that if w is the velocity of a moving wave solution of (3.34) 
then the new variable cp represents the velocity potential, i.e., w = Vcp. 

Numerical results using MFE together with the transformation (3.40) for a 
problem in semi-conductor device modelling with a complicated functional form for 
D(u) are given at the end of this section. It may be noted that with D(u) defined by 
(3.35) the transformation defined by (3.40) is the same as that suggested by 
Tomoeda [21], up to a constant multiple. We shall now use the transformation to 
derive expressions for the velocity of a moving interface which provides a front 
tracking technique which is incorporated in the MFE solution. 
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3.3.2. Front Tracking With MFE 

In any numerical solution of problems of type (3.37) it is advantageous that the 
moving interface u =0 should coincide with a mesh point in the discrete for- 
mulation. If a discrete approximation to the velocity of the interface point is 
available a moving mesh method such as MFE is particularly attractive since a 
mesh point located initially at the interface may be constrained to move with the 
interface velocity and hence remain at the interface (approximately) for all time. In 
this section we shall derive analytic expressions for the interface velocity in (3.37) 
by considering the transformed problem (3.38) which we shall discretize and incor- 
porate as a front tracking technique within the MFE formulation. 

In one dimension we require to solve (3.37) which may be transformed using 
(3.36) to give (3.38). We shall seek a piecewise linear MFE solution V(x, t) to the 
transformed problem (3.38) in the form 

V(x, t) = C ajaj. 

Replacing the time derivative in (3.38) with a mobile derivative yields 

Dv Dx 1 
--v Dt x~=vv”” +-$. (3.43) 

At the moving interface v = 0, assuming v,, remains bounded as -+ 0, (3.43) reduces 
to 

Dv Dx 1 
--vxot=$ 
Dt 

(3.44) 

If we denote the position of the interface by x1(t) and the velocity of this point by 
S(x,(t)), then by definition 

g (x,(t), t) = 0 

and from (3.44) we have 

G,(t)) = -; v,(xAt)). (3.45) 

A similar analysis for the two-dimensional problem 

v, = vv*v +; (Vu)’ (3.46) 
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yields 

s= --vu+c 
n 

at the interface where c is some arbitrary vector satisfying Vu ‘c = 0. 
In one dimension the simplest discrete analog of (3.45) is given by 

1 
s,= --m,, 

n 

287 

(3.47) 

where ml= Au/As, is the gradient of the MFE approximation V(x, E’) at the inter- 
face node s,. Numerical experiments show that significantly increased accuracy may 
be achieved by using 

where QV(x) is a local quadratic fitted to the piecewise linear MFE solutiom 
according to 

In two dimensions we approximate Vu in (3.47) using a simple average of the 
gradients of the MFE solution V(x, y, t) on elements either side of an interface 
node. A more detailed description is given in [ 17, 241. 

It may be noted that the transformation v = ZP is the only transformation of the 
form v = zP which yields non-zero bounded expressions for the velocity of the 
moving interface. 

In the MFE solution of the transformed problem (3.38) the MFE equations 
derived by minimising the residual with respect to the velocities of nodes lying on 
the moving interface are replaced by the discrete approximations to the interface 
velocity, which act as a constraint on the minimisation. Baines [ 141 has shown t 
the MFE matrix remains well-conditioned subject to such constraints and hence 
fast inversion is still possible using preconditioned conjugate gradients. 

For the inner products appearing on the right-hand side of the MFE equations 
for the solution of (3.38) we again use the quadratic recovery (3.24) for one-d 
sional problems and arbitrary smoothing (3.22) in two dimensions. The 
solution is advanced using explicit Euler time stepping, but a fixed time step is over- 
restrictive for problems of this type so at each time level t” we choose an adaptive 
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time step At” such that the diffusion coefficient V changes by a given percentage 8 
over each time step, i.e., 

i 

1 
“” = maxi { (&;)/(a;)} ’ ” I 

(3.50) 

3.3.3. Numerical Results 

We give numerical results for the MFE solution of the equation 

u, = V( UVU) 

in the case of cylindrical symmetry and conservation of total thermal energy 
(assuming that u represents temperature). A similarity solution exists in this case 
and is given by 

u,(r, t) = I 
-$(l-(ir)l’n, Ogr<R(t), 

(3.51) 
0, r > R(t), 

where the position of the moving front is defined by 

0.3 0.6 0.3 0.6 

FIG. 3.2. Initial data, MFE (solid line) and similarity (broken line) solutions of one-dimensional 
non-linear diffusion equation, time t = 0.0001 to t = 1.0. 
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with the constant C given by 

where E is the constant total thermal energy, q the number of space dimensions, 
and s(q) the surface area of the unit sphere in q dimensions (E = 1.0, q = 1, 2 in the 
numerical results). 

Initial conditions are given by the similarity solution (3.51) for some small 
starting time t, > 0 (t, = low4 in the results below) and we solve for x > 0 in one 
dimension and x, y > 0 in two dimensions, assuming Neumann conditions on the 
symmetry boundaries as appropriate. The MFE and similarity solutions for the 
case n = 10 in one dimension and n = 5 in two dimensions are respectively shown in 
Figs. 3.2 and Figs. 3.3, 3.4a, b. 

At each output time the transformation (3.36) is inverted. giving the 
approximation U(x, t) to u(x, t) as 

U(x, t) = (V(x, t))“” = (C ujEj)i’” 

- MFE 
------- S,M,L 

3.0 

1.5 

a. 0 B 

a. a 0.3 0.6 

FIG. 3.3. (a) Initial mesh and data for MFE soluttion of two-dimensional non-linear diffusion 
equation, time l= 0.0001. (b) Similarity solution. 



290 JOHNSON, WATHEN, AND BAINES 

- MFE 
------- S,M,L 

3.0 ’ 

1.5 

t-----Y: 
0.0 1 \i 

FIG. 3.4. (a) MFE mesh and solution of two-dimensional non-linear diffusion problem, time 
t = 0.033. (b) Similarity solution. 

and the solution for U is plotted on a line mesh between the nodes in the piecewise 
linear MFE solution for V to give sufficient resolution of the curvature in the 
solution. 

As a further example of the change of variable and front tracking technique we 
give an MFE solution of the Marshak problem in one dimension (see [25, 171 for 
details). The Marshak problem is defined by 

2.4, - j cZ,( un + 3u,), = 0, x>O,n>O (3.52) 

subject to the initial and boundary conditions 

~(0, t) = zoe20” 

and 

4% -co)=O. 

The values of the arbitrary constants c, l,, zO, and c1 were chosen as 2.998 x 104, 
10, 0.001, and 0.1, respectively, and the initial data was defined using the similarity 
solution at time t = 10 ,US. The MFE solutions U(x, t) and V(x, t) for the original 
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problem (3.52) and the associated transformed problem respectively for the case 
IZ = 3 are given in Fig. 3.5 with outputs at unit intervals of time from t= 25 to 
t=30ps. 

Finally we show an example using the transformation (3.40) to a problem of ty 
(3.34) which arises in semiconductor process modelling. In this case D(u) in (3.34) 
is defined by 

(3.53) 

where 

n, = +(u + JGGZ). 

Initial and boundary conditions are given by 

u(x, 0) = - Jky exp( - (x - 0.25)2/2~~) 

and 

z&(0, t) = 0 for all t > 0 

with the values of the arbitrary constants /? and crX chosen as 0.05 and 100, res 
tively. 

For the given data, (3.53) is well approximated by 

D(u) - 1 + 2.4 (3.54) 

U v - MFE 
------- S,M,L 

10 20 10 20 

FIG. 3.5. MFE and similarity solutions of one-dimensional Marshak problem time 1= 2.5 p to 
t=30p. 

581/79/2-4 
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i I i: 

0.0 0.5 1.0 
x (pm) 

FIG. 3.6. MFE solution of one-dimensional process modelling problem, time I = 0.0 to t = 20(@. 

and this approximation is used in (3.40) to define the transformed variable cp as 

cp = u + In(u). (3.55) 

In the transformed problem (3.41) for 50 the exact form (3.53) is retained for D(U). 
We solve the transformed problem using MFE (without front tracking since there is 
no degeneracy of D(U) here) as for the previous one-dimensional example, and 
results for the corresponding approximation to the original variable U(X, t) up to 
time t = 2000 are shown in Fig. 3.6 using a logarithmic axis for U. 

We move on now to consider systems of hyperbolic equations. 

4. SYSTEMS OF EQUATIONS 

In this section we give applications of two of the alternative approaches to the 
MFE solution of a system of evolutionary partial differential equations which are 
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described in Section 5.4 of Part I. We describe both the use of separate grids fsr 
each system component and the use of a common moving grid. 

As in Part I we consider the system of equations 

up - P(u(‘), . ..) u’q = 0, I = 1, . ..) 9, 84J 1 

and the approximate solutions expressible as finite element expansions 

where olJ/) are piecewise linear basis functions on a mesh given by the vector of node 
positions s(‘). In the case of separate grids the s(‘) are independent, while for the 
single grid case the s(I) are the same for all 1. 

When separate grids are employed the MFE method for systems is identical to 
the scalar method with the exception of the projection of the operator 
L”‘( u(l), . ..) VT)) (which, in general, depends on all components of the system) 
into the local space $1, i.e., the span of local basis functions cpi:), on the grid 
associated with the Zth component (see Part 1, Section 5.4). In the application 
presented here the inner products 

(L”‘( u(l), . ..) u’.4”‘), c/q,) 

involved in this projection are evaluated using Gaussian quadrature on the 
elements of the grid represented by the vector of nodal positions s(l). Note that in 
one-dimensional problems there is no difficulty in constructing the “global” grid, 
i.e., the union of all grids, and evaluating the integrals over each sub-element 
between consecutive nodes. This procedure has no simple multi-dimensional 
analog, however. r 

This first computation of this section (Fig. 4.1) shows the approximate solution 
by this method of a one-dimensional incompressible flow model of three immiscible 
fluids in a porous medium. The equation system is 

au(l) a 
- + z ( 

(u(“)y 
at (uw)2 + (u(292 + (1 _ E1(‘) - u(*))* 1 

=o 

(4.4) 
au(*) + 2 (d2’) 
at ax ( (u11))2 + (u(*))2 + (1 - u(l) _ u(*))2 > 

= 0, 

where u(l) is the saturation (fraction of total pore space) occupied by the first lluid, 
z&*) is the saturation of a second fluid and 1 -U (l) - z&*) is the saturation of the 
third fluid. For further details see [13]. 

When a single grid is used it is easier to evaluate the inner products (4.3), since 
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1.4.- 

1.2.- a 

-0.2.- 
1 2 3 4 5 6 7 8 9 10 

-0.4- 

-0.6- 

-0.8,- 

-1.0 .- 

-1.2.. 

-1.4- 

1.4 
b 

1.2 

-0.2.- 1 2 3 4 5 8 7 8 9 10 

-0.4.- 

-0.8.- 

d8,- 

-LO.- 

- 1.2.- 

-x4.- 

FIG. 4.1. MFE solution of three-phase porous media flow problem, t = 0.0 to t = 3.0: (a) saturation 
u(‘); (b) saturation- u(*). 

each component has the same basis functions. However, a particular choice of grid 
has to be made and the wrong choice can lead to the approximation’being unable 
to reflect the physical situation (see [27]). For this problem we have used separate 
grids, as described in Section 5.4 of Part I. 

The computation shown in Fig. 4.2 is a single grid MFE solution of the standard 
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PRESSURE PRESSURE ENERGY 

I*,,,,,,,, 1 I q1.71 , , , , 
-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 

FIG. 4.2. Single grid MFE solution of Sod shock-tube problem, time t = 0.144. 

shocktube problem as presented by Sod [26]. The equations are the one-dimen- 
sional Euler equations of gasdynamics in conservative form, namely, 

ap am 5+x=0 

(4.3 
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where p, m, e are the density, mementum, and energy and y is the usual ratio 1.4. 
The calculation commences at a time t =O.l using initial data from an exact 
Riemann solver provided by Sweby [ZS]. (We have not attempted to run the 
program from t = 0, since there are insufficient gradients for the method to work 
on.) Figure 4.2 shows the MFE solution at a time t = 0.144 using 14 nodes (most of 
them in the expansion wave). The solution is obtained in a single time step. For 
further details see [27]. Recent work by Edwards [29] has shown how a 
modification of the MFE approach using a single grid can lead to a more robust 
method. 

5. CONCLUSION 

In this paper we have exploited the theoretical results of Part I concerning the 
local nature of the MFE method in one dimension and the good conditioning of the 
(pre-conditioned) MFE matrix in higher dimensions to construct new efficient 
solutions of evolutionary partial differential equations which exhibit steep moving 
fronts. The incorporation of penalty functions has been avoided throughout by the 
use of a constrained minimisation technique to resolve the problem of parallelism 
and a time step control to prevent node overtaking. Explicit Euler time stepping is 
used throughout. A number of hyperbolic test problems, for both scalar equations 
and systems, have been solved in this way with no addition of artificial viscosity. 
Shocks are represented as true discontinuities with the shock speed given directly 
by the Rankine-Hugoniot conditions. For parabolic problems the treatment of 
second-order operators, both linear and non-linear, has been analysed and a 
recovery technique introduced which gives improved numerical results and allows 
an analysis of nodal movement for one-dimensional problems. A change of depen- 
dent variable, appropriate for the solution of non-linear diffusion problems, has 
been used to provide a front tracking technique which can be coupled with the 
MFE solution procedure. 

There remain a number of open questions, particularly regarding the accuracy of 
the MFE method. When nodes are driven far apart, resolution is lost and insertion 
of nodes may be needed. It is clear that a monitor of spatial accuracy and 
resolution is needed for this purpose and one suggestion is the residual of the dif- 
ferential equation itself. We have not used such a monitor in the examples given 
here. Time steps are guided by considerations of node overtaking or by percentage 
variations of a physical quantity such as the diffusion coefficient. Stability is lost 
when nodes overtake and this appears to be a counterpart to oscillations in the 
FFE method. There is also still scope for some practical error analysis and it is 
hoped that the simplicity of the approach adopted here may help to stimulate such 
an analysis. 
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